Metal pipes for automobile tubing

1. Scope

This standard specifies the metal pipes for tubing mainly used for brakes, fuel and lubrication of automobiles (hereinafter referred to as the "pipes").

Remarks:

The applicable standards for this standards are shown below.

JIS G 3141 Cold rolled carbon steel sheets and

JIS G 3445 Carbon steel tubes for machine

structural purposes

JIS G 3472 Electric resistance welded carbon steel tubes for automobile structural

purposes
Copper and copper alloy-seamless

JIS H 3300 Copper and copper alloy-seamless pipes and tubes

JIS Z 2241 Method of tensile test for metallic materials

JIS Z 2244 Method of vickers hardness test

JIS Z 2251 Method of micro hardness test for vickers and knoop hardness

JASO M 104 Testing method for automobile brake tube

2. Classification

2.1 Type of pipe

The pipes shall be classified into the following 4 groups:

Table 1 Pipes for automobile tubing

Туре	Code	Example of application
Brazed double wall low carbon steel tubing	TDW .	Tubing mainly for brakes
Welded low carbon steel tubing	TSW	Tubing mainly for fuel and lubrication
Carbon steel tubes for machine structural purpose (')	STKM 11J	Tubing for cooling, etc.
Copper and cooper alloy seamless pipes and tubes(2)	C1201 or C1220	Tubing mainly for air brakes

Note (¹) Carbon steel tubes for machine structural purposes shall be STKM11A specified in JIS G 3445 (Carbon Steel Tubes for Machine Structural Purposes) and STAM 30GA or STAM 30GB specified in JIS G 3472 (Electric Resistance Welded Carbon Steel Tubes for Automobile Structural Purposes) and shall meet requirements of this standards.

⁽²⁾ Copper and copper alloy seamless pipes and tubes shall be pursuant to C1201 or C1220 specified in JIS H 3300 (Copper and Copper Alloy Seamless Pipes and Tubes).

2.2 Classfication of surface treatment

The pipes shall be classified as tabulated below, according to the type of surface treatment:

Table 2 Surface treatment

Туре	Code		Type of surface treatment								
		surface treatment	tin-lead ent alloy	Electrolytic zinc coating			Organic film on electrolytic zinc coating				
				8µm	13µm	25µm	8µm	13µm	25μm(³)		
Brazed double wall low carbon steel tubing	TDW	- N	- T	- Z 8	-Z13	- Z25	- Z8 - OC	- Z13- OC	-Z25-OC		
Welded low carbon steel tubing	TSW	- N	- T	- Z8	-Z13	- Z25	- Z8- OC	-Z13-OC	- Z25 - OC		
Carbon steel tubes for machine structual purpose	STKM 11J	- N	- T	- Z8	- Z13	- Z25	–				
Copper and copper alloy seamless pipes and tubes	C1201 or C1220	<u> </u>			<u> </u>	_					

Note (3) Numerical values express thickness of electrolytic zinc coating.

3. Quality

3.1 Appearance

Both inside and outside of the finished tubing shall be smooth and free from cracks, flaws, or rusts.

3.2 Chemical composition

Chemical composition of the tubing shall be

pursuant to JIS G 3141, JIS G 3445, JIS G 3472, and JIS H 3300.

3.3 Mechanical property

Mechanical property of the pipes shall be pursuant to **Table 3**.

Table 3 Mechanical property

Туре	Code	Tensile strength MPa	Yield point MPa	Elogation %	Hardness HV	Bending expantion, flat bending
Brazed double wall low carbon steel tubing	TDW	Not less than 294	Not less than 176	Not less than 25	Not more than HV150	
Welded low carbon steel tubing	TSW					Wall of the tubing shall be free from
Carbon steel tubes for machine structual purpose	STKM11J	Not less than 294	_	Not less than 30	_	flaws or cracks after the tests pursuant to
Copper and copper alloy seamless pipes and tubes	C1201 or C1220	Not less than 206	_	Not less than 40	_	Table 10 are conducted

3.4 Surface treatment

(1) Thickness of surface treatment shall be pursuant to **Table 4** and **Table 5**.

Table 4 Thickness of inside surface treatment

Type	Code	Thickness of inside surface treatment As is copper-coated for fusion process. Copper coating not less than 3µm(4)		
Brazed double wall low carbon steel tubing	TDW			
Welded low carbon steel tubing	TSW			
Carbon steel tubes for machine structural purpose	STKM 11J	<u>-</u>		
Copper and cooper alloy seamless pipes and tubes	C1201 or C1220	-		

Note (4) Inside surface may not be copper-coated if mutually agreed if mutually agreed upon by the purchaser and manufacturer.

Table 5 Thickness of outside surface treatment

T: ::= 0		Thickness of outside surface treatment									
Type	Dipped	Elect	rolytic zinc co	ating	Organic film	Organic film on electrolytic zinc coating					
	tin-lead alloy coraing	Z8	Z13	Z25	Z8-OC	Z13-OC	Z25-OC				
Brazed double wall low					Zinc coating not less than 8 µ m	Zinc coating not less than 13 µ m	Zinc coating not less than 25 µ m				
carbon steel tubing	steel				Organic film avarage 20µm minimum 10µm						
Welded low	Average 6µm, minimum	Not less	Not less	Not less than 25 µ m	Zinc coating Not less than 8 µ m	Zinc coating Not less than 13 µm	Zinc coating Not less than 25 µm				
carbon steel tubing	3μm,				Organic film avarage 20µm minimum 10µm						
Carbon steel tubes for machine struc- tural purpose						_					
Copper and cooper alloy seamless pipes and tubes		No treatment shall be required.									

(2) Corrosion resistance

The test shall be conducted pursuant to corrosion test specified in **Table 10** and shall meet requirements in **Table 6**.

(3) Performance of organic film

Performance of organic film shall be pursuant to **Table 6** and shall meet requirements in **Table 7**, after the tests pursuant to **Table 10** are conducted as occasion demands.

Table 6 Corrosion resistance

Type and code of	coating	Crit	Criteria				
		Time elapsed till formation of white corrosion product (h)	Time elapsed till formation of iron rust (red rust) (h)				
Electrolytic zinc	Z8	72	192				
	Z13	72	288				
	Z25	72	480				
Dipped tin-lead alloy coating	Т	Iron rust (red rust) shall appear at 5 s	spots or less per 50cm² in 24 hours.				
Organic film on	Z8-OC		2000				
electrolytic zinc	Z13-OC		2500				
coating	Z25-OC]	3000				

Remark : The criteria in Table 6 shall be applied to straight pipe specimens.

Table 7 Performance of organic film

Test items	Criteria
Bending test	No flaking, cracking, and wrinkles shall occur.
Chipping test	No conspicuous flaking and cracking shall occur.
Heat cycle test	No blisters, flaking, hardening, and cracking shall occur.
Warm water test	No blisters and flaking shall occur.
Fluid resistance test	No blisters, flaking, cracking, and dissolution shall occur
Ozone resistance test	No flaking and cracking shall occur.

3.5 Guarantee pressure and burst pressure The Pipes shall be tested pursuant to Table 10

and shall resist the guarantee pressure specified in **Table 8** without leaving injurious deformation.

Table 8 Guarantee pressure and burst pressure

Туре	Code	Nominal diameter	Guarantee pressurre MPa	Burst pressurre MPa (*)		
Brazed double wall low carbon steel tubing	TDW	Not more than 4.76 6 and 6.35 8 10	34.3 34.3 24.5 24.5	108 83.3 66.2 53.9		
Welded low carbon steel tubing	TSW	Not more than 6.35 From 8 to 10	24.5			
Carbon steel tubes for ma- chine structural purposes			19.6 14.7 9.8	-		
Copper and copper alloy seamless pipes and tubes	C1201 or C1220	Pursuant to JIS H 3300.				

Note (5) Dynamic burst characteristics accompanied by fatigue shall be pursuant to the agreement between the purchaser and the manufacturer.

4. Method of manufacturing

4.1 Method of manufacturing the brazed double wall low carbon steel pipes

The brazed double wall low carbon steel pipes shall be made by copper-coating both surfaces of SPCC specified in **JIS G 3141**, shaping them into the form of double wall tubing, and sealing the seams by copper brazing and fusion in a reduction furnace.

4.2 Method of manufacturing the welded low carbon steel pipes

The welded low carbon steel pipes shall be made by copper-coating both surfaces or inner surface of SPCC specified in **JIS G 3141**, shaping them into a tubular form, and sealing the edges by electric resistance welding, however inside surface may not be copper-coated if mutually agreed upon by the purchaser and the manufacturer.

4.3 Method of manufacturing the carbon steel pipes for machine structural purposes

Manufacture of carbon steel tubes for machine structural purposes shall be pursuant to JIS G 3445 and JIS G 3472.

4.4 Method of the copper and copper alloy seamless pipe and tubes

Manufacture of copper and copper alloy seamless pipes and tubes shall be pursuant to **JIS H 3300**.

5. Dimension of pipes

5.1 Nominal diameter and dimension of pipeNominal diameter and dimension of pipes shall be pursuant to **Table 9**.

Table 9 Nominal diameter and dimension

	Ť		Table 9 Nomil	nal diameter at	ia annension	·	Unit : mm	
Nominal	Outside	diameter	Thickness					
diameter			,	Stan	dard dimension			
	dimention		Braze double wall low Carbon steel tubing	Welded low carbon steel tubing	Carbon steel tubes for machine structural purposes	Copper and copper alloy seamless pipes and tubes		
3.17	3.17		0.7	0.7		0.8		
4	4		0.7	0.7				
4.76	4.76	± 0.08	0.7	0.7		0.8	± 0.08	
6	6		0.7	0.7				
6.35	6.35		0.7	0.7 0.8		0.8		
8	8		0.7	0.7 0.8 1.0	0.7 0.8 1.0	1.0	-	
9	9			1.0	1.0		_	
10	10		0.7	0.7 0.8 1.0	0.7 0.8 1.0	1.0	_	
11	11				0.8 1.0		1	
12	12	1		0.9 1.0	0.9 1.0	1.0	_	
12.7	12.7			0.9 1.0	0.9 1.0	1.0	_	
14	14			1.0	1.0		_	
15	15	± 0.1		1.0	1.0	1.0	± 0.1	
16	16] - 0.1		1.0	1.0 1.2		_	
17	17		_	1.0	1.0 1.2		_	
18	18		5	1.0	1.0 1.2	1.0	_	
19	19				1.0 1.2			
20	20	_			1.0 1.2	1.0	-	
21	21				1.0 1.2		4	
22	22				1.0 1.2	1.0	4	
22.2	22.2				1.0 1.2			

Remark: Outside diameter shall be the outside diameter of raw pipe without surface treatment.

5.2 Shape of pipe end

Formed pipe end shall be pursuant to Attached **Tables 1~8**.

6. Test method

Test method shall be pursuant to Table 10.

Table 10 Test Method

	T										
Item	`		Туре								
	Brazed double wall low carbon steel tubing	Welded low carbon steel tubing	Carbon steel tubes for machine structural purpose	Copper and copper alloy seamless							
				pipes and tubes							
Tensile test	Pursuant to JIS Z 224	1 (Method of Tensile Te	est for Metallic Materials).								
Bending test	Examine if any flaws, was bent 360 degre below.	Examine if any flaws, cracks, or other defects occurred or not when the pipe was bent 360 degrees around a cylinder having the radius as specified below.									
٠,		Cvlinder	D								
• • • •	diameter (D	Nominal diameter (D is outside diameter of pipe)									
	8 mm or smaller over 8 mm										
Expansion test	mm. (2) Examine if any 1 curred or not wher taper was plugged specimen and the	diameter of end face	(1) Length of test specimen shall be 100 mm. (2) Examine if any flaws and cracks occurred or not when a conic tool with angle of 60 degrees was plugged into one end of the specimen and the specimen was expanded until	Pursuant to JIS H 3300.							
D		the diameter of end face was increased by 20%.									
Developing test	-	(1) Length of test specifications (2) Examine if any in and flaking occurrences test specimen is son each side of the flat plate.	: -								

Table 10 Test Method (Continued)

Item	100	· <u>· · · · · · · · · · · · · · · · · · </u>	Туре	
	Brazed double wall low carbon steel tubing	Welded low carbon steel tubing	Carbon steel tubes for machine structural purpose	Copper and copper alloy seamless pipes and tubes
Flattening and bending test	(1)Length of test specimen shall be 100 mm.			
	(2) Examine if any flaws and cracks occurred or not			
	when the spec- imen is held be- tween parallel plates, which are			
·	pressed in such a manner as the inside of tube			
	comes to a close contact to make the specimen flat, and the flat		<u>-</u> ,	_
	specimen is once bent 90 degrees to the direction of axis around a			
	cylinder having a diametre of 3 times the wall thickness of the			
	tube and then stretched straight.			
Flattening test		(2) Examine if any for not when the sparallel plates, when manner as the dicomes to 3 times tube. When the	ecimen shall be 100 mm. flaws and cracks occurred specimen is held between nich are pressed in such a stance between the plates the wall thickness of the plates are pressed, the libe placed at 90 degrees applied force.	Pursuant to JIS H 3300.
Guarantee pressure test	Examine if any leak applied with specified	of other defects occu d hydraulic pressure ar	red or not when pipe is ad held for 5 minutes.	_
Burst pressure test	Pursuant to 5.10 spe	cified in JASO M 104 .		_
Surface treatment thickness test	The standard practic	e shall be microscopic	test.	_
Corrosion resistance test	Pursuant to 5.6, Neu JASO M 104.	tral Salt Water Spray T	est, specified in	_
Film perform- ance test		Method) specified in J	ASO M 104.	-
Hardness test	Pursuant to JIS Z 22	44 or JIS Z 2251		_

7. Inspection

7.1 Inspection of appearance

Inspection results shall meet requirements specified in the above 3.1.

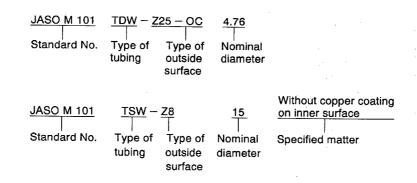
7.2 Inspection of mechanical properties

Inspection shall be conducted pursuant to the above 6 and the results shall meet requirements specified in the above 4.3.

7.3 Inspection of dimensions

Inspection results shall meet requirements specified in the above 5.

7.4 Inspection of surface treatment


Inspection shall be conducted by the above 6 and the results shall meet requirements specified in the above 3.4.

7.5 Inspection of guarantee pressure

Inspection results shall meet requirements specified in the above **6**.

8. Designation of product

Designation of products shall be pursuant to the standard number, type of tubing, and type and nominal diameter of outside surface.

Attached table 1 Shape and dimensions of double flares for tubing

Shape and dimensions of double flares for tubing shall be pursuant to Attached table 1.

Unit: mm

Туре	difficion	Double flare								
Shape	© \$0.15 E							ut y drawing eference)		
Nominal)	Α	В	7	-	(S	
diameter	Standard dimension	Tolerance			Standard dimension	Tolerance	Standard dimension	Tolerance	Min.	
3.17	3.17		4.9~5.4	1.4~2.1	0.7		1.4		1	
4.76	4.76	± 0.08	6.6~7.1	3.0~3.7	0.7	± 0.08	1.4		1	
6.35	6.35		8.6~9.1	4.5~5.2	0.7		1.4		1	
8	8		10.5~11.0	6.2~6.9	0.7		1.4		1.6	
10	10		13.0~13.5	8.2~8.9	0.7	į	1.4	± 0.2	1.6	
12	12	1	15.0~15.7	9.8~10.5	0.9	± 0.1	1.8	1	1.6	
12.7	12.7	± 0.1	15.6~16.3	10.3~11.0	0.9		1.8		1.6	
15	15	1	18.1~18.8	12.7~13.4	1.0		2.0		1.6	
18	18		21.5~22.2	15.7~16.4	1.0		2.0	<u> </u>	1.6	

Remark: Nominal diameters and dimensions of wall thickness which are not specified in Attached table 1 shall be mutually agreed upon by the purchaser and the manufacturer.

Attached table 2 Shape and dimensions of single flares for tubing

Shape and dimensions of single flare for tubing shall be pursuant to Attached table 2.

Unit: mm

	Single flare												
Type			· · · · · · · · · · · · · · · · · · ·		ingle hare								
Shape	<u>⊚</u> ø 0	.15 E		R0.4~R0.9		Tube	Assembly drawing (for reference)						
Nominal	L)	Α	В			•						
diameter	Standard Dimension	Tolerance											
3.17	3.17		4.2~4.8	0.7									
4.76	4.76	± 0.08	6.2~6.8	0.7	•								
6.35	6.35		8.1~8.7	0.7									
8	8		10.0~10.6	1.0									
10	10		12.1~12.7	1.0									
12	12	± 0.1	14.7~15.3	1.0									
12.7	_] - 0.1	_	_			4						
15	_		_	_									
18	_												

Remark: Nominal diameters which are not specified in Attached table 2 shall be mutually agreed upon by the purchaser and the manufacturer.

Attached table 3 Shape and dimensions of bulge for tubing

Shape and dimensions of Bluge for tubing shall be pursuant to Attached table 3.

Unit: mm

Туре					Bulge	
Shape	₹.	R 2 +82	R1.5	Q		Rubber hose Clip Assembly drawing (for reference)
Nominal)	Α	В	L	
diameter	Standard dimension	Tolerance			(for ref.)	
4.76	4.76	·	5.3~5.9	4.3~4.9	2.2	
6.35	6.35	± 0.08	7.1~7.7	5.8~6.4	2.8	
8	8		9.0~9.6	7.6~8.2	3.2	
10	10		11.2~11.8	9.7~10.3	3.2	
12	12		13.2~13.8	11.7~12.3	3.2	
12.7	12.7	± 0.1	13.9~14.5	12.4~13.0	3.2	
15	15		16.4~17.0	14.7~15.3	3.6	
18	18		19.4~20.0	17.7~18.3	3.6	

Remark: Nominal diameters which are not specified in Attached table 3 shall be mutually agreed upon by the purchaser and the manufacturer.

Attached table 4 Shape and dimensions of spool for tubing

Shape and dimensions of spool for tubing shall be pursuant to Attached table 2.

Unit: mm

Туре		Bulge												
Shape		R	L_1 R L_2				Rubber hose Clip Assembly drawing (for reference)							
Nominal diameter	Standard dimension	Tolerance	А	В	L ₁	L2								
4.76	4.76		5.3~5.9	4.76	4.5	3.5								
6.35	6.35	± 0.08	7.1~7.7	6.35	4.5	3.5								
8	8		9.0~9.6	8	4.5	3.5								
10	10		11.2~11.8	10	4.5	3.5								
12	12		13.2~13.8	12	4.5	3.5								
12.7	12.7	± 0.1	13.9~14.5	12.7	4.5	3.5								
15	15		16.4~17.0	15	4.5	3.5								
18	18		19.4~20.0	18	4.5	3.5								

Remark: Nominal diameters which are not specified in Attached table 4 shall be mutually agreed upon by the purchaser and the manufacturer.

Attached table 5 Shape and dimensions of bulge spool for tubing

Shape and dimensions of bluge spool for tubing shall be pursuant to Attached table 5.

Unit: mm

Type	Bulge spool														
Shape	$\begin{array}{c c} L_2 \\ \hline L_1 \\ \hline R \\ \hline \end{array}$ R0.5~R1.5 Rubber hose Clip Assembly drawing (for reference)														
Nominal		,	A		В		(С		-1	L ₂		d		
diameter	*1	Toler-	*1	Toler- ance	*1	Toler- ance	*1	Toler- ance	*1	Toler- ance	*1	Toler- ance	*1	Toler- ance	
4.76	4.76	-	5.6		4.6		5.6		2.2		28		4.76		
6.35	6.35	ł			6.1		7.4		2.8		28		6.35	,	
8	8	-0.00	9.3		7.9		9.3		3.2		33		8.0	+ 0.2	
10	10	-	11.5	± 0.3	10.00	± 0.3	11.5	± 0.3	3.2	± 0.5	33	± 0.2	10.0	- 0.1	
12	12	-	13.5	1	12.0		13.5		3.2		33		12.0		,
15	15	± 0.1	16.7	1	15.0		16.7		3.6		33		15.0		
18	18		19.7	1	18.0		19.7		3.6		33	<u> </u>	18.0		

Remark: Nominal diameters—which are not specified in Attached table 5 shall be mutually agreed upon by the purchaser and the manufacturer.

Attached table 6 Shape and dimensions of double spools for tubing

Shape and dimensions of double spools for tubing shall be pursuant to Attached table 6.

Unit: mm

Туре	Double spool														
Shape	0	$\sim R 0.5$ r $\sim C 0.5$		L_1 R_0	.5~R1	1.5		$\frac{D}{C}$		Tube Asse Clip draw (for re					
Maurinal		2		1		ВС				L ₁ L			d		L3
Nominal diameter	*1	Toler- ance	*1	Toler-	*1	Toler- ance	*1	Toler- ance	*1	Toler- ance	*1	Toler- ance	*1	Toler- ance	*1
4.76	4.76	-	5.6		4.76		5.6				28		4.76		
6.35	6.35	±0.08			6.35		7.4				28		6.35		
8	8	_0.00	9.3		8.0		9.3				33		8.0	+ 0.2	
10	10		11.5	± 0.3	10.0	1 -	11.5	± 0.5	4.5	±1.0	33	± 2.0	10.0	- 0.1	3.5
12	12	± 0.1	15.5	1 .	12.0	1	13.5				33		12.0		
15	15		16.7	1	15.0		16.7				33		15.0		
18	18		19.7	0.7	18.0	ot one	19.7				33		18.0	l	<u> </u>

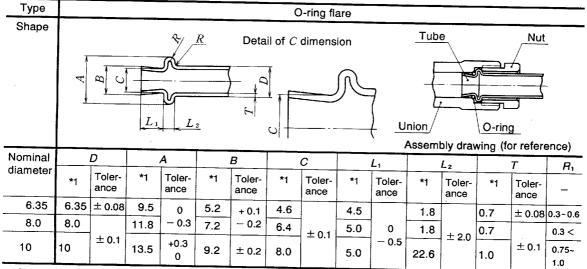
Remark: Nominal diameters which are not specified in Attached table 6 shall be mutually agreed upon by the purchaser and the manufacturer.

*1 : Standard dimension

Attached table 7 Shape and dimensions of curl spool for tubing

Shape and dimensions of spool for tubing shall be pursuant to Attached table 7.

Unit : mm


Туре								THE TO A		a table	<u> </u>				Jnit : mm
	Curl spool														
Shape	$R0.2\sim R0.5$ or $C0.2\sim C0.5$ $C0.2\sim C0.2$														
Nominal		D		A		В		С		L ₁		L ₂		d d	
diameter	*1	Toler- ance	*1	Toler- ance	*1	Toler- ance	*1	Toler- ance	*1	Toler- ance	*1	Toler- ance	*1	Toler	1
4.76	4.76		5.6		3.0		5.6				28		4.76	400	\dashv
6.35	6.35	±0.08	7.4		4.3		7.4	1			28	}	6.35		
8	8		9.3	± 0.3	6.1	1	9.3	1			33	1	8.0		
10	10		11.5		7.0	± 0.3	11.9	± 0.5	3.0	± 0.1	33	± 2.0	10.0	+ 0.2	
12	12		13.5		8.0		13.5	1	3.0	_ 0.1	33	± 2.0	12.0	- 0.1	
15	15	± 0.1	16.7		11.0		16.7				33		15.0		
18	18		19.7		14.0		19.7				33		18.0		

Remark: Nominal diameters which are not specified in Attached table 7 shall be mutually agreed upon by the purchaser and the manufacturer.

Attached table 8 Shape and dimensions of O-ring flare for tubing

Shape and dimensions of O-ring flare for turbing shall be pursuant to Attached table 8.

Unit: mm

Remark: Nominal diameters which are not specified in Attached table 8 shall be mutually agreed upon by the purchaser and the manufacturer.

*1 : Standard dimension

In the event of any doubt, the original standards in Japanese should be referred.

: SI PHASE UNRELATED STANDARD

(The standard to which SI units are not given or which dose not use units.)

Established by the Standard Council of JSAE

Date of Establishment: 1963-11-05

Date of Revision: 1975-02-13

Date of Revision: 1988-03-30

Date of Revision: 1994-03-31

Sub Committee in which the draft was made: SC of Metaric Material Technical Committee under which the draft was discussed: TC of Material Investigating Committee: Standard Committee under the Standard Council

Published by

The Society of Automotive Engineers of Japan, Inc. 10-2, Goban-cho, Chiyoda-ku, Tokyo 102, Japan

This printed matter has been prepared with financial support from the Japan Auto-Race Organization.